From Table 3 it can be noted that each atom in the structure has a coordination atmosphere of 14 near neighbors with the coordinated atoms forming nearly regular rhombic dodecahedra with one of the major axes pointing in the [$\overline{1} 60$] direction. The volume contraction associated with phase formation from the solid elemental components has been computed as 3%. The structure shows pronounced layering of the atoms in the $(001),(610),(\overline{8} 30),(7 \overline{1} 2),(\overline{1} 21)$, and (614) planes. This layering may well be associated with low activation energies for dislocation glide since it was observed qualitatively that $\mathrm{Li}_{9} \mathrm{Al}_{4}$, in contrast to $\mathrm{Na}{ }_{2} \mathrm{Tl}$, could suffer appreciable plastic strain without fracture.

There is a formal relationship between the structure of $\mathrm{Li}_{9} \mathrm{Al}_{4}$ and the tetragonal MoSi_{2}-type structure in the sense that, if one considers only atomic loci and not species, atomic arrays in the two structures are closely comparable. Both structures are formed by alternating atomic layers normal to the c axis in the case of $\mathrm{Li}_{9} \mathrm{Al}_{4}$ and normal to the a or b axes in the case of MoSi_{2}. The relationship can be observed by
comparing Figs. 3 and 4. This relationship between the two structures may simply reflect the fact that geometric constraints govern the efficient filling of space, and both $\mathrm{Li}_{9} \mathrm{Al}_{4}$ and MoSi_{2} are efficiently packed structures.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Rept. No. ORNL-TM-305.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Elliott, R. P. (1965). Constitution of Binary Alloys, First Supplement. New York: McGraw-Hill.
Hansen, D. A. \& Smith, J. F. (1967). Acta Cryst. 22, 836.
Hansen, M. \& Anderko, K. (1958). Constitution of Binary Alloys. 2nd ed. New York: McGraw-Hill.
Kjekshus, A. (1964). Acta Chem. Scand. 18, 2379.
Nelson, J. B. \& Riley, D. P. (1945). Proc. Phys. Soc. Lond. 57, 160.
Pearson, W. B. (1964). Acta Cryst. 17, 1.
Williams, D. E. (1964). USAEC Rept. No. IS-1052.
Williams, D. E. \& Rundle, R. E. (1964). J. Amer. Chem. Soc. 86, 1660.

The Crystal Structure of Tetracyanocyclobutane

By B. Greenberg* and B. Post
Polytechnic Institute of Brooklyn, Brooklyn, N.Y. 11201, U.S.A.

(Received 4 April 1967)
cis,trans,cis-1,2,3,4-Tetracyanocyclobutane, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4}$, crystallizes in the monoclinic system; the space group is $P 2_{1} / n$, with $a=8 \cdot 610, b=6 \cdot 193, c=6 \cdot 983 \AA$ (all $\pm 0 \cdot 005 \AA$),$\beta=98.4 \pm 0 \cdot 1^{\circ}$. There are two molecules per unit cell. The crystal structure has been determined from counter data with use of the symbolic addition phase determining procedure. The cyclobutane ring is planar and rectangular with $\mathrm{C}-\mathrm{C}$ edges of 1.561 ± 0.003 and $1.547 \pm 0.003 \AA$. Bond lengths in the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ 'legs', corrected for the effects of thermal motion, are $\mathrm{C}-\mathrm{C}, 1 \cdot 452 \pm 0.005 \AA$ and $\mathrm{C} \equiv \mathrm{N}, 1 \cdot 158 \pm 0.008 \AA$.

Introduction

The configuration of the highly strained cyclobutane ring in organic compounds has long been of considerable interest, but until recently only a few serious efforts had been made to investigate it by the methods of X-ray diffraction. These are summarized in Table 1. It appears that the cyclobutane ring is puckered in some compounds and planar in others. Additional studies are clearly needed to establish the conditions favoring one configuration over the other, as well as to determine bond lengths with maximum precision.

Tetracyanocyclobutane (TCCB) was synthesized by Griffin, Basinsky \& Peterson (1962) by the solid state

[^0]photodimerization of fumaronitrile. Chemical and physical tests indicated that the product of the reaction was probably the cis, trans, cis isomer (Fig. 1).
Both TCCB and fumaronitrile crystallize in the monoclinic system, space group $P 2_{1} / n$, with two mol-

Fig.1. Dimerization of fumaronitrile to form tetracyanocyclobutane.
ecules per unit cell. The crystal structure of fumaronitrile was determined by Orsa (1960). It seemed likely that the analysis of the crystal structure of TCCB would not only establish the configuration of its cyclobutane ring, but might reveal structural relationships between the molecular arrangements in crystals of the monomer and dimer.

Experimental

Single crystals of TCCB suitable for X-ray diffraction analysis were grown by slow evaporation of solutions in benzene and in carbon tetrachloride. Both solvents yielded the same product. A small irregularly shaped crystal $(0.1 \times 0.2 \times 0.3 \mathrm{~mm})$ was selected for investiga-

Table 1. Crystallographic studies of compounds containing cyclobutane rings

	Dihedral angle in ring	C-C bond length(s) in ring	Reference
Tetraphenylcyclobutane	180°	1.555 ± 0.02 1.585	Dunitz (1949)
	180	1.566 ± 0.015	Margulis (1965b)*
Octachlorocyclobutane		1.573	

Fig.2. Thermal motions of atoms in tetracyanocyclobutane.

Table 2. Crystal data

	TCCB	Fumaronitrile
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P 2_{1 / n}$
a	$8 \cdot 610$	3.89 Å
b	$6.193\} \pm 0.005 \AA$	$5 \cdot 60$
c	6.983	10.04
β	$98 \cdot 4 \pm 0 \cdot 1^{\circ}$	102.5°
\boldsymbol{Z}	2	2
@x-ray	$1.408 \mathrm{g.cm}^{-3}$	$1.21 \mathrm{g.cm}^{-3}$
$\varrho_{\text {meas }}$	1.384	$1 \cdot 196 \pm 0 \cdot 005$

tion. Crystal data for TCCB and fumaronitrile are listed in Table 2.

Intensity data were obtained with a single-crystal diffractometer using filtered $\mathrm{Cu} K \alpha$ radiation and pulse height analysis to reduce unwanted background. Reflection intensities were measured to $2 \theta=150^{\circ}$ by the stationary-crystal stationary-counter method. Six hundred and fifty-one of a total of 765 reflections accessible to $\mathrm{Cu} K \alpha$ radiation were detected and measured. General background was measured as a function of reflection angle and subtracted from each reflection intensity. In addition, forty-seven reflections were remeasured with the use of ' $\theta-2 \theta$ ' scans to obtain 'integrated' intensities. The ratios of these intensities to the corresponding 'peak' intensities were plotted as functions of reflection angles to convert 'peak' to 'integrated' intensities. The usual geometrical corrections were then applied to the latter.

Structure determination

Although the structure was clearly a simple one, we experienced considerable difficulty in interpreting 'sharpened' and 'unsharpened' Patterson maps computed from the three-dimensional data. The causes of these difficulties became apparent when the structure
determination was completed and will be discussed below.

At this point we decided to use the symbolic addition procedure of Karle \& Karle (1963) to determine the signs of the structure factors. Using a program described by Bednowitz (1966), E factors were computed from the experimental intensities. Six reflections with large E factors and many interactions were selected to initiate the phase determining procedure. Three of the six were assigned positive signs to fix the origin of the unit cell; the three others were given symbolic signs A, B and C (Table 3).

Table 3. Phase assignments for the symbolic addition procedure

			Number
h, k, l	$\|E\|$	Signs	of interactions
$10,0,4$	$3 \cdot 34$	B	41
$4,3,4$	$3 \cdot 11$	+	44
$3,2,4$	$3 \cdot 01$	+	51
$1,2,0$	$2 \cdot 96$	A	58
$4,3,6$	$2 \cdot 80$	C	45
$2,2,3$	$2 \cdot 44$	+	43

Symbolic signs of approximately 270 reflections with $|E|>0.90$ were calculated, including 29 h 0 l terms. With the use of these 29 terms, eight projections of electron density onto the ac plane were computed with the von Eller (1955) photosommateur. These projections were based on the eight phase combinations of the three symbolic signs, A reasonable peak arrangement was detected in one of the projections and the values of the symbolic signs based on that arrangement were used to compute ($h k 0$) and (0 kl) electron density maps. These confirmed that the correct choice had been made.

Coordinates obtained from these electron density maps served as the starting positions for least-squares

Table 4. Atomic position and thermal parameters
Estimated standard deviations $\times 10^{4}$ in parentheses.
A. Position parameters

	x	y	z
$\mathrm{C}(1)$	$0.0362(2)$	$0.0853(3)$	$-0.1245(3)$
$\mathrm{C}(2)$	$0.1499(3)$	$0.259(3)$	$-0.1217(3)$
$\mathrm{C}(3)$	$0.0921(2)$	$-0.1211(3)$	$-0.0059(3)$
$\mathrm{C}(4)$	$0.2504(2)$	$-0.1151(4)$	$0.0952(3)$
$\mathrm{N}(1)$	$0.2421(3)$	$0.3884(3)$	$-0.1150(4)$
$\mathrm{N}(2)$	$0.3733(2)$	$-0.1055(4)$	$0.1753(3)$
$\mathrm{H}(1)$	$-0.0069(20)$	$0.0435(36)$	$-0.2528(29)$
$\mathrm{H}(2)$	$0.0758(22)$	$-0.2541(34)$	$-0.0830(28)$

B. Thermal parameters $\left(\times 10^{4}\right)$

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
C(1)	79 (3)	155 (6)	118 (4)	8 (3)	5 (3)	8 (3)
C(2)	99 (3)	177 (6)	170 (5)	15 (3)	40 (3)	25 (3)
C(3)	69 (3)	137 (5)	135 (4)	4 (3)	4 (3)	-5 (3)
C(4)	77 (3)	230 (6)	181 (5)	12 (3)	8 (3)	53 (4)
N(1)	145 (4)	206 (6)	334 (6)	-23 (3)	105 (4)	18 (4)
N(2)	92 (3)	508 (10)	270 (5)	2 (4)	-34 (3)	132 (6)
H(1)	$B=1 \cdot 0$					
H(2)	$B=0.5$					

Table 5. Observed and calculated structure factors $\times 10$

 N N

OBS PCAL
H X L POBS FCAL
B K
1 POBS
al
π L FOB
L
日 \mathbb{R} L POBS PCAL
refinements of the structure. The BNL* version of the Busing-Levy, full-matrix least-squares program was used. This minimizes:

$$
\sum_{h k l} W_{h k l}\left[\left(F_{\text {obs }}\right)_{h k l}-\left(F_{\text {ealc }}\right)_{h k l}\right]^{2} .
$$

Initially 109 reflections, recorded at relatively low Bragg angles, were used to refine the positions of the carbon and nitrogen atoms. After a few cycles

$$
R=\sum_{h k l}\left[\frac{\mid\left(F_{\text {obs }}\right)_{h k l}-[\text { scalefactor }]\left(F_{\text {calc }}\right)_{h k l} \mid}{\left|\left(F_{\text {obs }}\right)_{h k l}\right|}\right]
$$

decreased to $0 \cdot 18$. All the experimental data were then included in the least-squares calculations. Anisotropic temperature factors were computed for the carbon and nitrogen atoms. The positions and isotropic temperature factors of the hydrogen atoms, which were initially located on the basis of geometrical considerations, were also refined.
Late in the refinement process, it became clear that the measured intensities of ten reflections were grossly in error and the corresponding reflections were discarded. The final value of R for the remaining 641 reflections was 0.054 .

In the final refinement cycle the changes of atomic parameters, excluding those of hydrogen atoms, were less than two per cent of their estimated standard deviations. A difference electron density map was then computed which confirmed the locations of the hydrogen atoms. The largest background peaks were less than one third the height of the hydrogen peaks on the difference maps. The final atomic positions and thermal parameters are listed in Table 4. Observed and calculated structure factors are shown in Table 5.

[^1]Three weighting schemes were used in the final stage of the least-squares refinement process, i.e. $\sigma=$ constant; $\sigma \propto F$, and a more elaborate scheme in which σ was evaluated by taking explicit account of statistical counting errors in peak intensities, background, and errors made in relating peak heights to integrated intensities. Bond lengths and angles obtained from all three weighting schemes were within two estimated standard deviations of one another. Results reported in Table 6 are based on the third of the schemes mentioned above.

Discussion

The cyclobutane ring in TCCB is planar and rectangular with bonds of $1.561 \AA$ between cis $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ 'legs' and $1.547 \AA$ between trans $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ 'legs' (each $\pm 0.003 \AA$).

The difference between the two bond lengths equals five estimated standard deviations and is therefore statistically significant. These results agree well with previous studies involving compounds with planar cyclobutane rings (Table 1). Our efforts to establish the $\mathrm{C} \equiv \mathrm{N}$ bond lengths with high accuracy were relatively unsuccessful. The values obtained from the least squares analysis ($1 \cdot 123$ and $1 \cdot 129 \AA$) were unexpectedly low, apparently owing to the large anisotropic thermal motions of these atoms (Fig.2).

To correct these bond lengths for the effects of thermal motion, individual atoms were assumed to 'ride' on their neighbors (Busing \& Levy, 1964). This led to calculated increases of $0.007 \AA$ in the average $\mathrm{C}-\mathrm{C}$ bond (from 1.445 to $1.452 \AA$) and $0.032 \AA$ in the average $\mathrm{C} \equiv \mathrm{N}$ bond (from $1 \cdot 125$ to $1 \cdot 158 \AA$). The latter value is close to the expected one and it is tempting to view this as a confirmation of the assumed model

Table 6. Bond lengths and angles in tetracyanocyclobutane

$\mathrm{C}(1)-\mathrm{C}(3)$	1.561 A	$\mathrm{C}(3)^{\prime}-\mathrm{C}(1)-\mathrm{C}(3)$	$89.8{ }^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(3)^{\prime}$	1.547	$\mathrm{C}(1)^{\prime}-\mathrm{C}(3)-\mathrm{C}(1)$	$90 \cdot 2$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.448	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$177 \cdot 6$
C(3)-C(4)	$1 \cdot 441$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	178.3
C(1)-C(2)*	1.453	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	116.2
C(3)-C(4)*	1.451	$\mathrm{C}(3)^{\prime}-\mathrm{C}(1)-\mathrm{C}(2)$	115.2
$\mathrm{C}(2)-\mathrm{N}(1)$	$1 \cdot 129$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	115.8
$\mathrm{C}(4)-\mathrm{N}(2)$	$1 \cdot 123$	$\mathrm{C}(1)^{\prime}-\mathrm{C}(3)-\mathrm{C}(4)$	114.4
$\mathrm{C}(2)-\mathrm{N}(1)^{*}$	$1 \cdot 155$	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	$108 \cdot 9 \pm 1 \cdot 3$
$\mathrm{C}(4)-\mathrm{N}(2)^{*}$	1.162	$\mathrm{C}(3)^{\prime}-\mathrm{C}(1)-\mathrm{H}(1)$	$112 \cdot 3 \pm 1 \cdot 0$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.95 ± 0.02	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(2)$	$112 \cdot 8 \pm 1 \cdot 1$
$\mathrm{C}(3)-\mathrm{H}(2)$	$0 \cdot 98 \pm 0.02$	$\mathrm{C}(1)^{\prime}-\mathrm{C}(3)-\mathrm{H}(2)$	$112 \cdot 7 \pm 1 \cdot 1$
		$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	$112 \cdot 4 \pm 1 \cdot 2$
		$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(2)$	$109 \cdot 9 \pm 1 \cdot 1$
Other intramolecular distances			
$\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$	2.201 A	$\mathrm{C}(2)-\mathrm{C}(4)$	$2.828 \AA$
$\mathrm{C}(3)-\mathrm{C}(3)^{\prime}$	2.194	$\mathrm{N}(1)-\mathrm{N}(2)$	3.751

The estimated standard deviations of bonds, involving non-hydrogen atoms only, equal $\pm 0.003 \AA$; the corresponding e.s.d. of angles involving these atoms equal $\pm 0 \cdot 2^{\circ}$.
of the thermal motion, but this can only be unambiguously established on the basis of low temperature work.

Both $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ angles in TCCB are approximately 178°. A similar non-linearity of the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ 'legs' has been noted in tetracyanoquinodimethane by Hanson (1965) and cis-1,2,3-tricyanocyclopropane by Hartman
\& Hirshfeld (1966). Hartman \& Hirshfeld (1966) and Dunitz \& Ibers (1967) have discussed possible causes of this effect.

The closest intermolecular approaches are listed in Table 7 and are illustrated in Fig.3. All involve at least one nitrogen atom. N1(1), for example is less than

Table 7. Closest intermolecular approaches in TCCB (\AA)
For $H^{\cdots} \mathrm{X}$ less than $3 \cdot 0 \AA$ and for $\mathrm{X} \cdots \mathrm{X}^{\prime}$ less than $3 \cdot 5 \AA$, where X is C or N . The second number in the atom symbol designates:

(1)	x	y	z
(2)	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$\frac{1}{2}+z$
(3)	$\frac{1}{2}-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
(4)	x	$y-1$	z
(5)	$\frac{1}{2}+x$	$-\frac{1}{2}-y$	$\frac{1}{2}+z$
(6)	$\frac{1}{2}-x$	$\frac{1}{2}+y$	$-\frac{1}{2}-z$

$\mathrm{N}(1)(1) \cdots \mathrm{H}(2)(6)$	$2.94 \pm 0 \cdot 02$
$\mathrm{~N}(2)(1) \cdots \mathrm{H}(1)(5)$	$2 \cdot 92 \pm 0 \cdot 03$
$\mathrm{~N}(1)(1) \cdots \mathrm{H}(1)(6)$	2.75 ± 0.02
$\mathrm{H}(2)(1) \cdots \mathrm{N}(1)(4)$	$2 \cdot 66 \pm 0 \cdot 03$
$\mathrm{~N}(2)(1) \cdots \mathrm{H}(2)(5)$	2.41 ± 0.02

$\mathrm{N}(2)(1) \cdots \mathrm{C}(1)(5)$	3.490 ± 0.003
$\mathrm{C}(3)(1) \cdots \mathrm{N}(1)(4)$	$3 \cdot 430 \pm 0.003$
$\mathrm{C}(4)(1) \cdots \mathrm{N}(1)(4)$	3.404 ± 0.003
$\mathrm{~N}(2)(1) \cdots \mathrm{C}(2)(2)$	$3 \cdot 36 \pm \pm 0.003$
$\mathrm{~N}(1)(1) \cdots \mathrm{C}(4)(6)$	3.363 ± 0.003

$$
\begin{array}{ll}
\mathrm{N}(1)(1) \cdots \mathrm{N}(2)(3) & 3 \cdot 363 \pm 0 \cdot 003 \\
\mathrm{C}(2)(1) \cdots \mathrm{N}(2)(3) & 3 \cdot 264 \pm 0 \cdot 003 \\
\mathrm{~N}(1)(1) \cdots \mathrm{C}(3)(6) & 3 \cdot 186 \pm 0 \cdot 003 \\
\mathrm{~N}(2)(1) \cdots \mathrm{C}(3)(5) & 3 \cdot 185 \pm 0 \cdot 003 \\
\mathrm{~N}(1)(1) \cdots \mathrm{C}(2)(6) & 3 \cdot 159 \pm 0 \cdot 003 \\
\mathrm{~N}(1)(1) \cdots \mathrm{C}(1)(6) & 3 \cdot 074 \pm 0 \cdot 003
\end{array}
$$

Fig.3. The crystal structure of tetracyanocyclobutane as viewed along the a axis.

Fig.4. The crystal structure of tetracyanocyclobutane as viewed along the b axis.
$3.5 \AA$ from ten adjacent atoms and $\mathrm{N} 2(1)$ is less than $3.5 \AA$ from seven atoms. The molecular packing is also shown in Fig.4. It can be seen that the molecules are most closely packed in layers approximately parallel to the (101) and ($10 \overline{1}$) planes, leaving large open channels along $\frac{1}{2}, y, 0$ and $0, y, \frac{1}{2}$.

We have mentioned that TCCB was synthesized by the solid state photodimerization of fumaronitrile. Griffin et al. (1962) have pointed out that . . .the orientation (of fumaronitrile molecules in one crystal) is completely consistent with the formation of a dimer having the structure of tetracyanocyclobutane providing bond formation takes place between nearest neighbor molecules and no major shifts in relative positions of the atoms take place during the reaction'...

Our analysis of the two crystal structures indicates, in agreement with Griffin, that the arrangement of molecules in fumaronitrile, in parallel layers $3 \cdot 16 \AA$ apart, does indeed favor the formation of molecules of the dimer (TCCB) from pairs of nearest molecular neighbors. We are unable, however, to detect any significant influence of the crystal structure of fumaronitrile on the crystal structure of TCCB.

Analysis of the completed structure revealed some of the causes of our difficulty in interpreting the Patterson maps. A large number of peaks, unrelated by symmetry, are separated by $y=\frac{1}{2}$. This factor, plus the
large anisotropic thermal motions of the atoms in the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ 'legs', made interpretation of the Patterson maps difficult. By contrast the symbolic addition method proceeded smoothly and rapidly.

References

Bednowitz, A. (1966). Thesis, Polytechnic Institute of Brooklyn.
Воск, C. M. (1967). Abstracts ACA Mtg., p. 23.
Busing, W. R. \& Levy, H. (1964). Acta Cryst. 17, 142.
Dunitz, J. D. (1949). Acta Cryst. 2, 1.
Dunitz, J. D. \& Ibers, J. A. (1967). Perspectives in Structural Chemistry. New York: John Wiley.
Eller, G. von (1955). Thesis, Univ. of Paris.
Griffin, G. W., Basinsky, J. E. \& Peterson, L. I. (1962). J. Amer. Chem. Soc. 84, 1012.

Hanson, A. W. (1965). Acta Cryst. 19, 610.
Hartman, A. \& Hirshfeld, F. L. (1966). Acta Cryst. 20, 80.
Karle, I. L. \& Karle, J. (1966). Acta Cryst. 20, 555.
Karle, I. L. \& Karle, J. (1963). Acta Cryst. 16, 969.
Karle, I. L., Karle, J. \& Britts, J. (1966). J. Amer. Chem. Soc. 88, 2918.
Margulis, T. N. (1965a). Acta Cryst. 18, 742.
Margulis, T. N. (1965b). Acta Cryst. 19, 857.
Margulis, T. N. \& Fisch, M. S. (1967). J. Amer. Chem. Soc. 89, 223.
Orsa, A. (1960). Thesis, Polytechnic Institute of Brooklyn.
Owen, T. B. \& Hoard, J. L. (1951). Acta Cryst. 4, 172.

[^0]: * Taken from a thesis submitted to the Faculty of the Polytechnic Institute of Brooklyn in partial fulfillment of the requirements for the degree of Master of Science.

[^1]: * Brookhaven National Laboratory, Upton, New York.

